使用脚压力/力量测量硬件和运动捕获(MOCAP)技术对人类稳定的定量评估昂贵,耗时,并且仅限于实验室(基于实验室)。我们提出了一种基于图像的新方法来估计稳定计算的三个关键组件:质量中心(COM),支持基础(BOS)和压力中心(COP)。此外,我们通过使用公共可用的多模式(MOCAP,脚压力,2视频视频),定量验证基于图像的方法来计算两种经典稳定度量,以直接从基于实验室的感觉输出(地面真相)产生的方法来计算两种经典稳定性措施。十个受试者人类运动数据集。我们的实验结果表明:1)我们的COM估计方法(COMNET)始终优于最先进的基于惯性传感器的COM估计技术; 2)我们基于图像的方法与单独的鞋垫脚压结合,与地面真相稳定性度量产生一致且具有统计学意义的相关性(comtocop r = 0.79 p <0.001,comtobos r = 0.75 p <0.001); 3)我们完全基于图像的稳定性度量估计在两个稳定性指标上产生一致,正且具有统计学意义的相关性(ComtoCop r = 0.31 P <0.001,comtobos r = 0.22 P <0.001)。我们的研究为自然环境中的稳定性计算和监测提供了有希望的定量证据。
translated by 谷歌翻译
Artificial intelligence methods including deep neural networks (DNN) can provide rapid molecular classification of tumors from routine histology with accuracy that matches or exceeds human pathologists. Discerning how neural networks make their predictions remains a significant challenge, but explainability tools help provide insights into what models have learned when corresponding histologic features are poorly defined. Here, we present a method for improving explainability of DNN models using synthetic histology generated by a conditional generative adversarial network (cGAN). We show that cGANs generate high-quality synthetic histology images that can be leveraged for explaining DNN models trained to classify molecularly-subtyped tumors, exposing histologic features associated with molecular state. Fine-tuning synthetic histology through class and layer blending illustrates nuanced morphologic differences between tumor subtypes. Finally, we demonstrate the use of synthetic histology for augmenting pathologist-in-training education, showing that these intuitive visualizations can reinforce and improve understanding of histologic manifestations of tumor biology.
translated by 谷歌翻译
3D Flash LiDAR是传统扫描激光雷达系统的替代方法,有望在紧凑的外形尺寸中进行精确的深度成像,并且没有运动部件,例如自动驾驶汽车,机器人技术和增强现实(AR)等应用。通常在图像传感器格式中使用单光子,直接飞行时间(DTOF)接收器实施,设备的操作可能会受到需要在室外场景中处理和压缩的大量光子事件的阻碍以及对较大数组的可扩展性。我们在这里提出了一个64x32像素(256x128 spad)DTOF成像器,该成像器通过将像素与嵌入式直方图使用像素一起克服这些局限性,该直方直方图锁定并跟踪返回信号。这大大降低了输出数据帧的大小,可在10 kfps范围内或100 kfps的最大帧速率进行直接深度读数。该传感器可选择性地读数检测表面或传感运动的像素,从而减少功耗和片外处理要求。我们演示了传感器在中端激光雷达中的应用。
translated by 谷歌翻译
在很大程度上,由于隐私问题,很难培训有关疾病诊断或图像分割的医学图像的计算机视觉相关算法。因此,高度寻求生成图像模型以促进数据共享。但是,需要研究3-D生成模型,需要研究其隐私泄漏。我们使用在肿瘤面膜上进行条件研究的头和颈宠物图像介绍了3D生成模型横向gan(TRGAN)。我们为模型定义了图像保真度,实用性和隐私的定量度量。在培训过程中评估了这些指标,以确定理想的保真度,公用事业和隐私权权衡,并建立这些参数之间的关系。我们表明,Trgan的歧视者很容易受到攻击,并且攻击者可以识别哪些样品在训练中几乎完全准确(AUC = 0.99)。我们还表明,仅访问发电机的攻击者无法可靠地分类样品是否已用于训练(AUC = 0.51)。这表明Trgan发电机(而不是歧视者)可以用于共享具有最小隐私风险的合成3-D PET数据,同时保持良好的效用和保真度。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
深层生成模型已成为检测数据中任意异常的有前途的工具,并分配了手动标记的必要性。最近,自回旋变压器在医学成像中取得了最先进的性能。但是,这些模型仍然具有一些内在的弱点,例如需要将图像建模为1D序列,在采样过程中误差的积累以及与变压器相关的显着推理时间。去核扩散概率模型是一类非自动回旋生成模型,最近显示出可以在计算机视觉中产生出色的样品(超过生成的对抗网络),并实现与变压器具有竞争力同时具有快速推理时间的对数可能性。扩散模型可以应用于自动编码器学到的潜在表示,使其易于扩展,并适用于高维数据(例如医学图像)的出色候选者。在这里,我们提出了一种基于扩散模型的方法,以检测和分段脑成像中的异常。通过在健康数据上训练模型,然后探索其在马尔可夫链上的扩散和反向步骤,我们可以识别潜在空间中的异常区域,因此可以确定像素空间中的异常情况。我们的扩散模型与一系列具有2D CT和MRI数据的实验相比,具有竞争性能,涉及合成和实际病理病变,推理时间大大减少,从而使它们的用法在临床上可行。
translated by 谷歌翻译
超越地球轨道的人类空间勘探将涉及大量距离和持续时间的任务。为了有效减轻无数空间健康危害,数据和空间健康系统的范式转移是实现地球独立性的,而不是Earth-Reliance所必需的。有希望在生物学和健康的人工智能和机器学习领域的发展可以解决这些需求。我们提出了一个适当的自主和智能精密空间健康系统,可以监控,汇总和评估生物医学状态;分析和预测个性化不良健康结果;适应并响应新累积的数据;并提供对其船员医务人员的个人深度空间机组人员和迭代决策支持的预防性,可操作和及时的见解。在这里,我们介绍了美国国家航空航天局组织的研讨会的建议摘要,以便在太空生物学和健康中未来的人工智能应用。在未来十年,生物监测技术,生物标志科学,航天器硬件,智能软件和简化的数据管理必须成熟,并编织成精确的空间健康系统,以使人类在深空中茁壮成长。
translated by 谷歌翻译
空间生物学研究旨在了解太空飞行对生物的根本影响,制定支持深度空间探索的基础知识,最终生物工程航天器和栖息地稳定植物,农作物,微生物,动物和人类的生态系统,为持续的多行星寿命稳定。要提高这些目标,该领域利用了来自星空和地下模拟研究的实验,平台,数据和模型生物。由于研究扩展到低地球轨道之外,实验和平台必须是最大自主,光,敏捷和智能化,以加快知识发现。在这里,我们介绍了由美国国家航空航天局的人工智能,机器学习和建模应用程序组织的研讨会的建议摘要,这些应用程序为这些空间生物学挑战提供了关键解决方案。在未来十年中,将人工智能融入太空生物学领域将深化天空效应的生物学理解,促进预测性建模和分析,支持最大自主和可重复的实验,并有效地管理星载数据和元数据,所有目标使生活能够在深空中茁壮成长。
translated by 谷歌翻译
对疾病的诊断或图像分割医学图像训练计算机视觉相关算法是缺乏训练数据,标记的样品,和隐私问题的困难所致。出于这个原因,一个强大的生成方法来创建合成数据后高度寻求。然而,大多数三维图像生成器需要额外的图像输入或者是非常占用大量内存。为了解决这些问题,我们建议调整视频生成技术3-d图像生成。使用时间GAN(TGAN)架构,我们将展示我们能够产生逼真的头部和颈部PET图像。我们还表明,通过调节肿瘤口罩发电机,我们能够控制肿瘤的几何形状和位置,在生成的图像。为了测试合成影像的用途,我们使用合成的图像训练分割模型。空调真实肿瘤掩模合成图像被自动分割,和对应的真实图像也分割。我们评估使用的骰子得分的分割,并找到两个数据集(0.65合成数据,0.70的真实数据)同样的分割算法执行。然后,各种radionomic特征在分割的肿瘤体积为每个数据集来计算。真实的和合成的特征分布的比较显示,8七个特征分布有统计学不显着差异(p> 0.05)。还计算所有radionomic特征之间的相关系数,它是示出了所有在真实数据组中的强统计相关的在合成数据集被保留。
translated by 谷歌翻译
背景:虽然卷积神经网络(CNN)实现了检测基于磁共振成像(MRI)扫描的阿尔茨海默病(AD)痴呆的高诊断准确性,但它们尚未应用于临床常规。这是一个重要原因是缺乏模型可理解性。最近开发的用于导出CNN相关性图的可视化方法可能有助于填补这种差距。我们调查了具有更高准确性的模型还依赖于先前知识预定义的判别脑区域。方法:我们培训了CNN,用于检测痴呆症和Amnestic认知障碍(MCI)患者的N = 663 T1加权MRI扫描的AD,并通过交叉验证和三个独立样本验证模型的准确性= 1655例。我们评估了相关评分和海马体积的关联,以验证这种方法的临床效用。为了提高模型可理解性,我们实现了3D CNN相关性图的交互式可视化。结果:跨三个独立数据集,组分离表现出广告痴呆症与控制的高精度(AUC $ \ GEQUQ $ 0.92)和MCI与控制的中等精度(AUC $ \约0.75美元)。相关性图表明海马萎缩被认为是广告检测的最具信息性因素,其其他皮质和皮质区域中的萎缩额外贡献。海马内的相关评分与海马体积高度相关(Pearson的r $ \大约$ -0.86,p <0.001)。结论:相关性地图突出了我们假设先验的地区的萎缩。这加强了CNN模型的可理解性,这些模型基于扫描和诊断标签以纯粹的数据驱动方式培训。
translated by 谷歌翻译